
CROSSTALK The Journal of Defense Software Engineering 17December 1998

Requirements analysis includes
both the gathering of functional

and system requirements and
the organization of those requirements
into a logical, traceable, and understand-
able form. It is one of the most discussed
and least well-implemented parts of the
software engineering process. As a result,
poor requirements analysis is a leading
cause of failure in systems development
[1]. To address this situation, use case-
based requirements definition is becom-
ing popular for systems analysis in gen-
eral and object-oriented development in
particular.

Although use cases are well accepted
in principal, the form a use case should
take, the level of granularity it should
encompass, and even the specific defini-
tion of the term “use case” are still mat-
ters of dispute in the industry. As a re-
sult, most Department of Defense
(DoD) contracting officials still prefer to
see traditional structured methods and
good old-fashioned “shall” statements
for requirements definition. This article
introduces how to “find” use cases and
what it takes to elaborate use cases into
effective tools for user validation, opera-
tional metrics, and system design. Inter-
estingly, use case can be implemented
without throwing away the value of the
traditional shall statements and without
tossing mission-based structured decom-
position out the window.

Use Case Definition
A use case is a sequence of events, per-
formed through a system, that yields an
observable result of value for a particular
actor.1 The key issue for requirements
management in this definition is the
words “observable result of value.” The
primary goal of requirements definition

should be the provision of value. Because
use cases, by definition, fit that goal,
they are used as the primary organiza-
tional structure for requirements defini-
tion. The additional components needed
of a fully elaborated use case are
• Actors that collaborate in the use

case.
• Events (and associated business rules)

in which the actors collaborate.
• Information that is passed and re-

turned in the course of each collabo-
ration.

• Context (environment) in which the
use case takes place.
Context can best be defined in terms

of additional requirements that affect the
use case in terms of inputs, controls,
outputs, and mechanisms.2 Input de-
scriptions are requirements associated
with what input is available and in what
form it can or should be provided. Con-
trols impose algorithmic restrictions on
how and when the use case must be
performed by prescribing rule sets and
regulations that are mandatory. Output
descriptions add specific formatting and
content requirements to the basic use
case product. Finally, mechanism pre-
scriptions are associated with architec-
tural requirements in the sense of logical
interfaces to current or planned systems.
Enabling collaborations with actors
beyond the primary actor that will or
must interface in the prescribed use case
are also identified.3

Four Ways to Create Use Cases
There are essentially four ways to create
use cases in sufficient detail to be in-
cluded in formal requirements in a form
suitable to generate implementable sys-
tems design and test specifications:

• Mission decomposition – a form of
traditional hierarchical structured
analysis.

• Unstructured aggregation – collect
and classify traditional shall state-
ments.

• Scenario story-driven discovery –
use cases are discovered by analyzing
written descriptions of day-to-day
activity or desired activity.

• Actor or responsibility discovery –
first define the actors and roles, then
define their collaborations and re-
sponsibilities.
Mission decomposition begins with a

particular mission goal. The goal must
be a clear statement. It may not, in and
of itself, have clear metrics for its
achievement. If so, the goal must be
decomposed into components in a fash-
ion analogous to use of the goal, ques-
tion, metric (GQM) paradigm that is
often advocated to discover software
metrics [3]. Beginning with mission
defined in terms of a goal, question what
accomplishments (products, services,
etc.) are required to reach the goal. De-
composition continues until all of the
lowest-level accomplishments can be
described in terms of a measurable result
for a specific user in support of the top-
level mission. In other words, decompo-
sition continues until each “leaf node”
accomplishment contains the basic out-
put specification for a use case. These
output specifications then become the
definition around which use case elabo-
ration takes place. Elaboration includes
identifying the events, actors, informa-
tion structures, business rules, and non-
functional requirements that apply to
the particular mission component.

Unstructured aggregation is used to
collect and classify requirements col-

Four Roads to Use Case Discovery
There Is a Use (and a Case) for Each One

Gary A. Ham
Battelle Memorial Institute

Use case-based requirements definition is a hot topic, particularly in object-oriented
software engineering circles. Appropriate content is achieved by looking at potential
use cases from four different views. Each view provides unique advantages. Together
they offer the information needed to develop the fully elaborated use cases that facili-
tate clearly defined, understandable, measurable, and testable design.



18 CROSSTALK The Journal of Defense Software Engineering December 1998

lected from various venues in the form
of shall statements and business rules.4

Any active voice shall statement that
describes an individually measurable
product or service that must be provided
for a particular actor becomes a candi-
date use case. All other requirements are
reviewed for their applicability to the use
cases discovered. Generally, these addi-
tional requirements are applicable in a
descriptive sense as input, output, con-
trol, and mechanism requirements de-
pending on how they will affect the
further development of the candidate
use cases.

A scenario story is a detailed descrip-
tion of all the interactions by one or
more users with the system in a set of
related events. The story should include
details that describe user interaction with
the system in a detailed, concretely
specified and verifiable form. The sce-
nario story is used for both requirements
elicitation and user validation. When
written properly, scenario story para-
graphs form potential use cases, and
sentences within those paragraphs de-
scribe the events involved in performing
the use case.

Actor, responsibility, and collabora-
tion discovery is a traditional object-
oriented analysis technique that begins
with finding roles that actors play, what
responsibilities they have for task accom-
plishment, and what other actors they
must collaborate with to accomplish
those tasks.5 Use cases are discovered by
identifying productive task results.
Subtasks leading to those results become
events within an identified use case.

So, which approach to use case dis-
covery is best? Each approach offers
advantages. GQM-based mission de-
composition offers measurable results
and a focus on mission rather than fluff
and “nice to have.” Shall statements
allow formal integration of nonfunc-
tional and architectural concerns into
analysis and provide specific reference to
requirements, e.g., performance response
times, that may apply to multiple use
cases. Scenario stories offer a complete-
ness of detail and an effective user vali-
dation viewpoint that is difficult to
achieve with other approaches. Scenarios
are also of great value in obtaining even-

tual user acceptance of new or changing
systems. Finally, no matter which use
cases are identified, they cannot be put
together until the actors and collabora-
tors in events are identified.

Each approach also has limitations. It
is sometimes difficult to obtain mission
focus from untrained subject matter
experts, even in facilitated workshops.
Merely getting consensus on the mission
can be an interesting task in some envi-
ronments. It is much easier to ask,
“What do you do each day?” Theoreti-
cally, shall statements are individually
verifiable and can be clearly written, at
least in the microsense. However, be-
cause of their “atomic” nature, this is
usually not the case. Most of the time,
shall statements are poorly organized,
ambiguously stated, and difficult to
implement or test. They are often redun-
dant and overlapping, yet designers
often find large gaps when basic modules
are built. Scenarios tend to focus on
current process and change based on
current process. This makes it harder to
think outside of the box. Beginning with
scenarios also tends to add requirements
that benefit particular users rather than
benefit the mission to be accom-
plished—fluff happens. Finally, the
purely bottom-up actor and responsibil-
ity approach raises completeness ques-
tions and a concern that generated use
cases might reflect individuals’ require-
ments ahead of organizational mission
needs. There also are questions about the
effectiveness of role and class abstraction
in a bottom-up “find the nouns” type of
environment.6

Since each approach has both ben-
efits and limitations, the question of
where to start becomes one of basic
expediency. Start with whichever entry
point offers the most initial return in
information. You can begin with what is
most comfortable for the organization
under analysis or for the team doing the
analysis. You can also reuse existing
documentation. If initial scenario stories
are available, use them. If prior business
process reengineering work has left clear
mission descriptions, or defined organi-
zational role and responsibilities defini-
tions, use them. If all you have are large
documents filled with poorly structured

(or well structured) shall statements, use
them, too. The rest of the analysis infor-
mation can be added at any point, as
long as the use case structure to which it
is added remains consistent.

Use cases are not requirements in and
of themselves. Instead, use cases provide
a showcase in which requirements are
precisely organized and illustrated for
user validation, system design, and test
script development. To be effective, a use
case needs the following:
• A measurable contribution to a de-

fined mission in support of a primary
actor.

• A clear definition of input, output,
control, and mechanism-related
requirements and business rules.

• A presentation format that facilitates
functional user validation and change
elicitation.

• An understandable presentation of
roles and collaborations by event in a
sequence as a basis to assign and find
class operations.
Each of the above needs is best

served by a different one of the four
approaches. So, achieving a high level of
effectiveness implies that all four ap-
proaches are eventually needed for com-
plete analysis. Leaving one out will re-
duce the value of that use case as system
design or test script development docu-
mentation. As long as a defined process
to maintain traceability and coordina-
tion between approaches is maintained,
the particular initial approach is not
material. The measure of success will be
the clearly defined, understandable,
testable designs that result from fully
elaborated use cases.

Disclaimer and Acknowledgments
The views expressed in this article are
my own (as the author) and do not
formally represent those of the DoD or
Battelle Memorial Institute. They repre-
sent my distillation of collective team
member experience in support of the
Computer-Based Patient Record
Interoperability using Object-Oriented
Technology project for the Office of the
Assistant Secretary of Defense for Health
Affairs. Csaba Eghazy, Scott Eyestone,
Carol Fogelsong, Don Heim, and Janet

Requirements Management



CROSSTALK The Journal of Defense Software Engineering 19December 1998

Martino provided valuable insight that is
reflected in some form in this article. u

About the Author
Gary A. Ham is a senior research scien-
tist for Battelle Memorial Institute, Na-
tional Security Division, Information
Systems Engineering and Process Mod-
ernization Department in Arlington, Va.
A former Marine Corps comptroller and
Naval Academy computer science in-
structor, he currently researches value
metrics definition processes to support
object-oriented requirements analysis
and design of DoD systems. He has a
bachelor’s degree in economics from
Whitman College in Walla Walla, Wash.
and a master’s degree (with distinction)
in information systems management
from the Naval Postgraduate School in
Monterey, Calif. He is currently a doc-
toral candidate in information technol-
ogy at George Mason University in
Fairfax, Va.

Principal Research Scientist
Battelle Memorial Institute
2101 Wilson Blvd., Suite 800
Arlington, VA 22201-3008
Voice: 703-575-2118
Fax: 703-671-9180
E-mail: ham@battelle.org

References
1. Research Report, “Chaos,” The Standish

Group, 1995, http://
www.standishgroup.com/chaos.html.

2. Jacobson, Ivar, Martin Griss, and Patrick
Jonsson, Software Reuse: Architecture,
Process, and Organization for Business
Success, ACM Press, New York, N.Y.,
1997.

3. Fenton, Norman E., Software Metrics, a
Rigorous Approach, Chapman and Hall,
London, 1994.

Notes
1. Ivar Jacobson’s basic definition differs

slightly: “A use case is a sequence of
transactions performed by a system,
which yields an observable result of value
for a particular actor” [2]. For our pur-
poses, an actor is defined as a participant
in a use case event, as an instigator, a
provider of service or product, or as a
recipient of that service or product.

2. If this sounds a little like Integration
Definition for Function Modeling
(IDEF0), it should. IDEF0, with a
difference in focus from functional
decomposition to product or service
identification, can effectively be used to
identify mission-focused use cases. The
required change in mindset may be
difficult for traditional IDEF0 modelers.
It was for me. If you can make the transi-
tion, however, a whole new approach to
software metrics based on activity-based
costing becomes available.

3. The particular form that a use case
should take is less important than the
content. The only requirement is a con-
sistent presentation of use case contents
that provides clear understandability by
subject matter experts. The use of formal
notation languages, e.g., Unified Model-
ing Language and predicate logic, should
be left out unless the user community is
fully conversant in the notation pre-
sented. We use a standard format for our
use cases. This “standard” has, however,
been adjusted in each analysis iteration to

better meet the understandability needs
of our validating users.

4. Business rules are defined to be require-
ments that contain a conditional phrase,
e.g., “if,” or “then.” Business rules are
designed to govern the actions of an
event or events, either singly or grouped
in a rule base. In some references,
nonconditional rules are referred to as
business rules. My current project merely
calls such rules requirements. We feel the
distinction is important because business
rule sets can be used within rule engines
to process events depending on condi-
tion. Straight requirements act regardless
of condition.

5. Although analogous, this is not the same
as the class, responsibility, and collabora-
tion approach. We are defining roles that
will probably (but may not) be assigned
to classes as part of the design process.
We do not try for class definition in
analysis use case development. We save
that for design, when architectural de-
pendency issues are more completely
specified.

6. Yet, we have used this approach exten-
sively for project management. All of our
task statement development and project
work breakdown structures are based on
the definition of responsibilities and
collaborations between project teams
where project teams are recognized as
actors or classes in the object-oriented
sense. Project management is object
management to the extent that Gantt
charts are defined by a composition of
sequence diagrams developed from the
original collaboration diagrams.

The Air Mobility Command (AMC) Computer Sys-
tems Squadron (CSS), Scott Air Force Base, Ill. received a
Level 3 rating during a Software Engineering Institute
(SEI) Capability Maturity Model (CMM) assessment. The
CSS currently has over 450 employees dedicated to devel-
oping, maintaining, and enhancing transportation and
command and control software systems for AMC. The
assessment culminated 17 months of dedicated hard work.

AMC CSS Achieves CMM Level 3
One requirement to achieve Level 3 was to develop and

maintain a usable set of software process assets that improve
performance across all projects and provide a basis for cumu-
lative, long-term organizational benefit. They developed a
process asset library (PAL) located on the Web at http://
cpssweb.safb.af.mil:81/pal/pal_home.htm. The AMC CSS
PAL is accessible to everyone within the military and gov-
ernment Internet domains.

Four Roads to Use Case Discovery: There Is a Use (and a Case) for Each One


